CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

COMBINED SCIENCE

5129/02

Paper 2

May/June 2003

2 hours 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 20.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use

Total

This document consists of 18 printed pages and 2 blank pages.

MML 3328 5/02 S41619/2 © CIE 2003 UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

[Turn over

1 Fig. 1.1 represents the arrangement of atoms or molecules in four different substances, A, B, C and D.

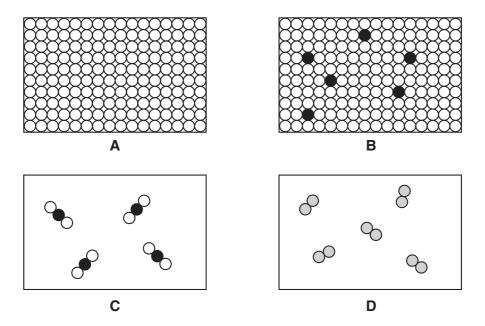


Fig. 1.1

(a)	Which substance is an alloy?	[1]
(b)	Which substance is a compound?	[1]
(c)	Which substances are elements? and	[1]
(d)	Which substance could be carbon dioxide?	[1]

2 A measuring cylinder contains 80 cm³ of water and has a total mass of 300 g.

A stone is then lowered into the cylinder. The new reading of the volume is $110\,\mathrm{cm}^3$ and the total mass is $390\,\mathrm{g}$.

The readings are shown in Fig. 2.1.

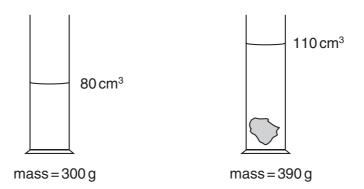


Fig. 2.1

[3]

]

_							
3 ((a)	Inspired	aır	differs	trom	expired	aır.

~ · ·		11.00					
Stata	thraa	differences	hatwaan	inenirad	and	avnirad	aır
Olale	uncc	uniciciicos	DCLWCCII	II ISPII CU	anu	CAPILCU	an.

1	 	 	

2.

વ	[3]

(b) Fig. 3.1 shows some apparatus for comparing inspired and expired air.

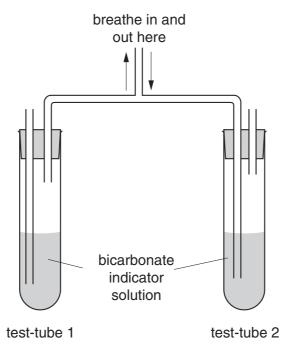


Fig. 3.1

Each test-tube contains bicarbonate indicator solution. In atmospheric air, bicarbonate indicator solution is red. In expired air it turns yellow. The reaction is reversible.

At the start of the experiment the bicarbonate indicator in both test-tubes is red. A person breathes in and out through the middle tube.

In which test-tube will the bicarbonate	indicator solut	ion go yellow?
---	-----------------	----------------

ГΗ
 ין

(c) The yellow bicarbonate indicator solution is put into the apparatus in Fig. 3.2.

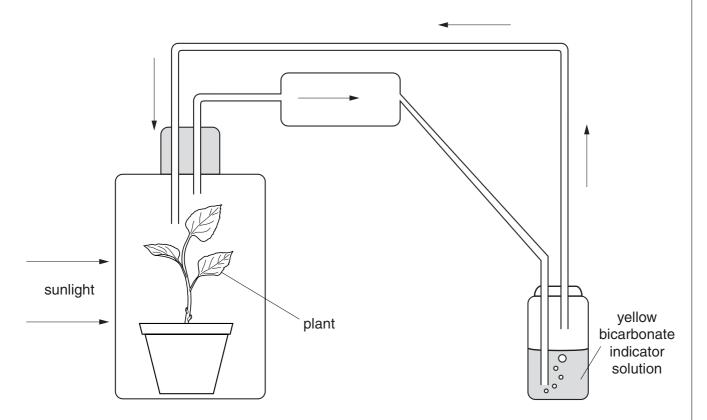


Fig. 3.2

The apparatus is left in sunlight for two hours. The yellow solution becomes red again.

(i)	Suggest why the bicarbonate indicator changes colour.	
(ii)	Name the process in the plant that causes the colour change.	[1]
(iii)	State the word equation for this process taking place in the plant.	

4 A student investigated the reactivity of some metals. He placed small pieces of the metals copper, iron, magnesium and zinc in test-tubes containing the same volume of hydrochloric acid. The acid in each tube had the same concentration and initial temperature.

His observations are shown in Fig. 4.1.

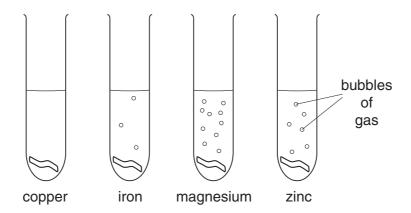


Fig. 4.1

(a)	Use first	his observations to list the metals in order of reactivity, the most reactive me	etal
	1		
	2		
	3		
	4		[2]
(b)	_	gest why the hydrochloric acid should be the same concentration and temperate ach of the test-tubes.	ure
			[1]
(c)	(i)	Name the gas given off when the metals react with hydrochloric acid.	
	(ii)	State the test for this gas.	
			 [2]
(d)	Stat	e the name and formula of the salt formed when zinc reacts with hydrochloric ac	id.
	nam	ne formula	[2]

5 Fig. 5.1 shows how the displacement of particles in a wave varies with distance from the source.

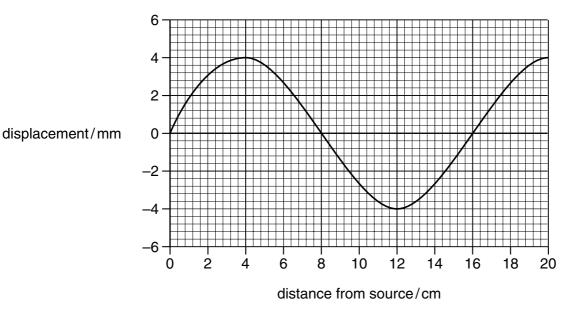


Fig. 5.1

(a)	Use	Fig.	5.1	to	deter	mine
-----	-----	------	-----	----	-------	------

(i)	the wave	length,
-----	----------	---------

.....cm [1]

(ii) the amplitude.

..... mm [1]

(b) The wave shown in Fig. 5.1 has a frequency of 5.0 Hz.

(I) State v	vnat is meant	t by <i>trequency</i> .
-------------	---------------	-------------------------

.....

(ii) Use your answer to (a)(i) to calculate the speed of the wave.

[3]

6	(a)	(i)	State three different uses of energy within the body.
			1
			2
			3[3]
		(ii)	Suggest three ways in which energy can be lost from the body.
			1
			2
			3[3]
	(b)		e recommended daily energy intake for a man aged 45 is 12100 kJ and for a year old man is 8800 kJ.
		Sug	gest a reason for this difference in daily energy intake.
			[1]
7	Sulp	ohur	dioxide is produced when coal is burnt in air. Sulphur dioxide causes acid rain.
	(a)	Wri	te the symbol equation for the burning of sulphur in oxygen.
			[1]
	(b)		en the sulphur dioxide dissolves in rain water what happens to the pH value of the water?
			[1]
	(c)	Sta	te two environmental problems caused by acid rain.
		1	
		2	[2]

8 Fig. 8.1 shows an electric kettle. The heating element heats the water around it.

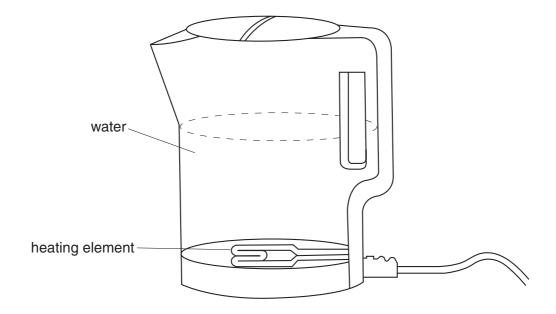


Fig. 8.1

(a)	Explain, in detail, how the rest of the water in the kettle is heated by convection.
	[3]
(b)	Suggest two reasons why the body of the kettle is made of plastic rather than metal.
	1
	2
(c)	The mains plug of the kettle has three connections. One of them is called the live . What are the names of the other two connections?
	and [2]
(d)	The mains supply is 230 V. The current in the heating element of the kettle is 8.0 A.
	Calculate the resistance of the heating element.

9 Fig. 9.1 shows a section through part of a green leaf.

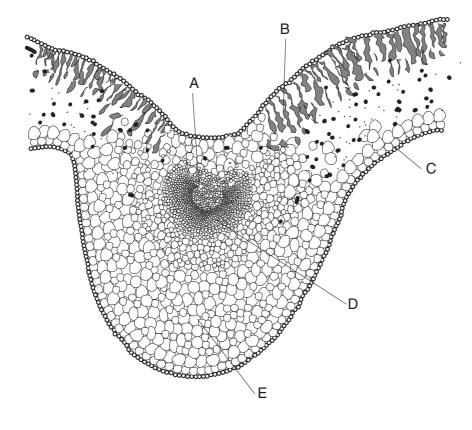


Fig. 9.1

(a) Name the tissue in which water is carried through the leaf.

[1]

(b) From Fig. 9.1 give

(i) the letter that identifies the tissue in (a),

(ii) the letter that identifies tissue containing chlorophyll.

[1]

(c) Name the process by which water is lost from the leaf.

- **10** Ethane and ethene are both hydrocarbons. They can be distinguished from each other using aqueous bromine solution.
 - (a) (i) State the colour of aqueous bromine solution.

.....

(ii) State what you would see when aqueous bromine solution is added to ethane and to ethene in separate test-tubes.

ethane	 	 	 	

[3]

(b) Both hydrocarbons burn in oxygen. What are the products of complete combustion of the hydrocarbons?

and the second second	r 🔿 1	
and	 [2]	

11 Fig. 11.1 shows a simple electric bell. When the switch is closed the metal ball hits the gong.

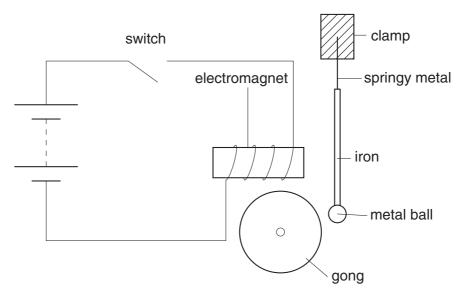


Fig. 11.1

- (a) Explain why the metal ball moves when the switch is closed.

 [3]
- (b) What difference, if any, does it make if the cells are reversed?
- (c) Complete the following sentence about the energy changes taking place in the cells.

The cells change energy into energy. [2]

12 Fig. 12.1 shows a section through a flower.

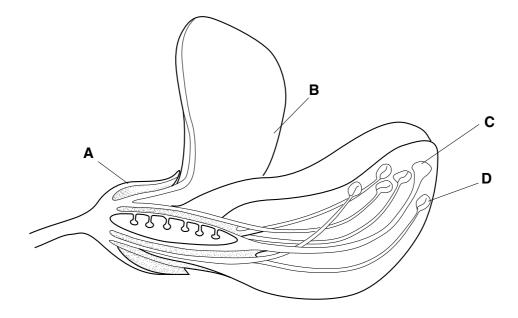


Fig. 12.1

(a)	Suggest one use for each of the labelled parts.	

A	
В	
C	
D	
	•
On Fig. 12.1, mark with a cross (X) a place where fertilisation occurs.	[1]

(c)	After fertilisation,	what do t	the ovule	and the	ovarv	become?

The ovule becomes a

(b)

13 (a) Ammonia contains nitrogen and hydrogen and is represented by the formula NH₃.

Use the information from the Periodic Table to help you complete Fig. 13.1 to show the arrangement of the outer shell electrons in a molecule of ammonia.

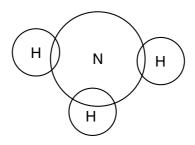


Fig. 13.1

(b) (i) Name the type of bonding present in ammonia.

[1]
(ii) Explain, in terms of particles, why the boiling point of ammonia is -34 °C.

14 Fig. 14.1 shows a bar magnet being pushed into a coil of wire to induce an e.m.f.

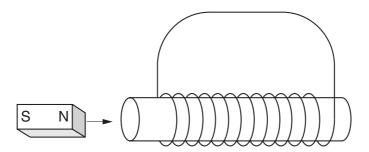


Fig. 14.1

(a)	State three factors that affect the size of the induced e.m.f.	
	1	
	2	
	3	[3
(b)	The induced e.m.f. produces a current through the coil.	
	State two ways by which the current may be reversed.	
	1	
	2	[2

15 Fig. 15.1 shows some plant tissue.

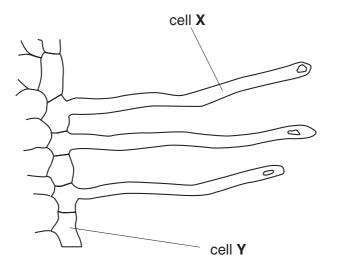


Fig. 15.1

(a)	(i)	Name the type of cell marked X .	
			[1]
	(ii)	Name the process by which water enters cell X .	
			[1]
	(iii)	Suggest why cell X is better at taking in water than cell Y .	
			[1]
(b)	Sug	gest four ways in which water is used in a plant.	
	1		
	2		
	3		
	4		[4]

16	An	elem	ent X exists as tw	vo isotopes ²⁸ X an	d ³⁰ X .		
	(a)	Wha	at are <i>isotopes</i> ?				
							[2]
	(b)	Con	nplete the followi	ng table.			
			inatana	number of	number of	number of	
			isotope	protons	neutrons	electrons	
			²⁸ X			14	
			³⁰ X	14	16		
							[3]
	(c)		v do the chemica er? Explain your a	•	ach isotope of th	e element compar	e with each
		Ouric	or: Explain your	answer.			
	(-I\		Ale - Desire die Tele				[2]
	(a)	Use	the Periodic Tab	le to identify elem	ent X.		
							[1]

17 Ball A and ball B in Fig. 17.1 are both made of polythene.

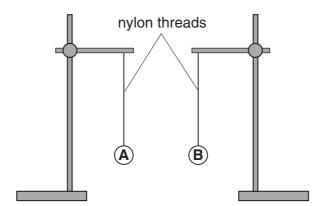


Fig. 17.1

(a) A polythene ball, initially uncharged, can be given a negative charge by rubbing it with a duster.

What type of charge does the duster gain? [1]

(b) Fig. 17.2 shows the two balls after they have each been given a negative charge.

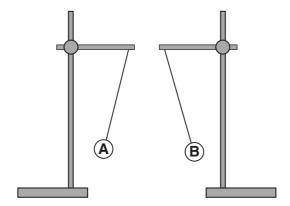


Fig. 17.2

Explain why the two balls do not hang vertically.

.....[1]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

		0	4 :	e E	Helium	20	Se	Neon		40	Ā	Argon		84	궃	Krypton		131	Xe				띪	Radon					
		IIA			N	19	ш	Fluorine	10	35.5	C	Chlorine	18	80	ă		36	127	_		54		¥	Astatine	98				=
		5				16	0	Oxygen	6		ဟ		17		Se		35	128	<u>е</u>	Tellurium	53		6		82				_
		>					z		8		<u>_</u>	sphorus	16		As		34		Sp		52		œ		84				
									7								33				21				83				E
		<u>≥</u>				12	ပ	Cart	9		S		14	22	ge G	Germa	32	11	S		20		윤		82				_
		=				£	Δ	Boron	2J	27	Αſ	Aluminium	13	02	Ga	Gallium	31	115	ī	Indium	49	204	11	Thallium	81				-
ts														65	Zu	Zinc	30	112	క్ర	Cadmium	48	201	Ę	Mercury	80				
Elemen														64	చె	Copper	29	108	Ag	Silver	47	197	Ρn	Gold	79				
e of the	Group													69	Z	Nickel	28	106	Pd	Palladium	46	195	풉	Platinum	78				
le Periodic Table of the Elements	Gro													59	රි	Cobalt	27	103	뜐	Rhodium	45	192	<u>_</u>	Iridium	77				
ne Perio			- :	I,	Hydrogen 1									56	Е	Iron	26	101	æ	Ruthenium	44	190	Os	Osmium	76				
Th														55	M	Manganese	25		ည	Technetium	43	186	æ	Rhenium	75				
														52	ပ်	Chromium	24	96	Ø	Molybdenum	42	184	>	Tungsten	74				
														51	>	Vanadium	23	93	g	Niobium	41	181	Б	Tantalum	73				
														48	F	Titanium	22	91	Ż	Ziroonium	40	178	Ξ	Hafnium	72				
														45	သွ	Scandium	21	68	>	Yttrium	39	139	Ľ	Lanthanum	57 *	227	Ac	Actinium	+ 68
		=				6	Be	Beryllium	4	24	δ	Magnesium	12	40	င္မ	Calcium	20	88	က်	Strontium	38	137	Ва	Barium	56	226	Ra	Radium	88
		_				7	=	Lithium	3	23	Na	Sodium	11	39	¥	Potassium	19	85	윤	Rubidium	37	133	Cs	Caesium	55		<u>ن</u>	Francium	87
															5	129	9/02/	/M/J	/03										

144			150	152	157	159	162	165	167	169
Nd Pm Sm		Sm		교	p O	P	ò	욷	ш	Ę
Promethium		Samarinm		Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium
61 62	9	62		63	64	92	99	29	89	69
238										
U Np Pu		Pu		Am	S	짪	ັວ	Es	F	ΡM
Neptunium	_	Plutonium		Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium
92 93 94		94		92	96	26	86	66	100	101

Lr Lawrencium

Nobelium

175 **Lu** Lutetium

173 **Xb** Ytterbium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic massX = atomic symbol

×

Key

*58-71 Lanthanoid series †90-103 Actinoid series